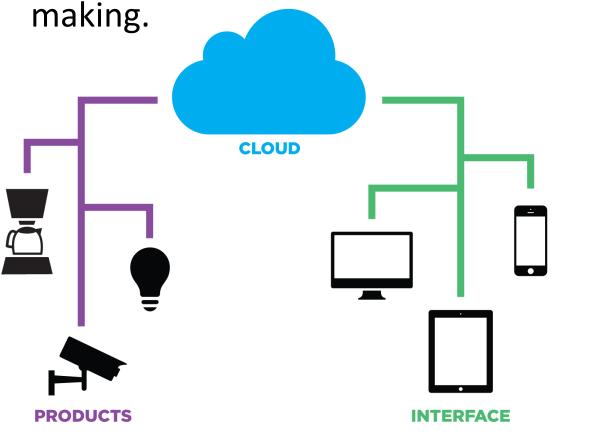


Secure Data Provenance in Cloud-centric Internet of Things via Blockchain Smart Contracts


Saqib Ali (PhD) Post-doc fellow


Supervisor:

Dr. Guojun Wang, Pearl River Scholarship Distinguished Professor Director of Institute of Computer Networks, Vice Dean of School of Computer Science and Technology, Guangzhou University, Guangzhou.

Use Case: IoT Devices

IoT devices harvest the data through sensors and transmit it over a wireless network towards a cloud storage for analysis and decision

Problems in the Collected Data

The collected data can be faulty due to:

- Environmental influence,
- Background noise,
- Faculty sensors,
- Dying battery,
- Device may generate biased or fake data due to security attacks (e.g., data modification, false information injection or fast sampling rate to drain the battery of the device).

Proposed Solution:

- Blockchain & Smart Contracts
 - i. Highly Trusted
 - ii. No need for the trusted 3rd party
 - iii. Protected
 - iv. Tampered proof
 - v. Data transparency
 - vi. Visibility
 - vii. Auditability

Block 0	Block 1	Block 2	Block 3					
Timestamp	Timestamp	Timestamp	Timestamp					
Nonce	Nonce	Nonce	Nonce					
Block Hash	Hash of Block 0	Hash of Block 1	Hash of Block 2					
$T_{x1}, T_{x2}, T_{x3}, \dots, T_{xn}$	T _{x1} , T _{x2} , T _{x3} , T _{xn}	$T_{x1}, T_{x2}, T_{x3}, \dots, T_{xn}$	$T_{x1}, T_{x2}, T_{x3}, \dots, T_{xn}$					

Distributed Ledger Technology (DLT)

A **distributed ledger** is a type of data structure which resides across multiple computer devices, generally spread across locations or regions.

Key Components

P2P network

Distributed computation

Cryptography

Consensus algorithm

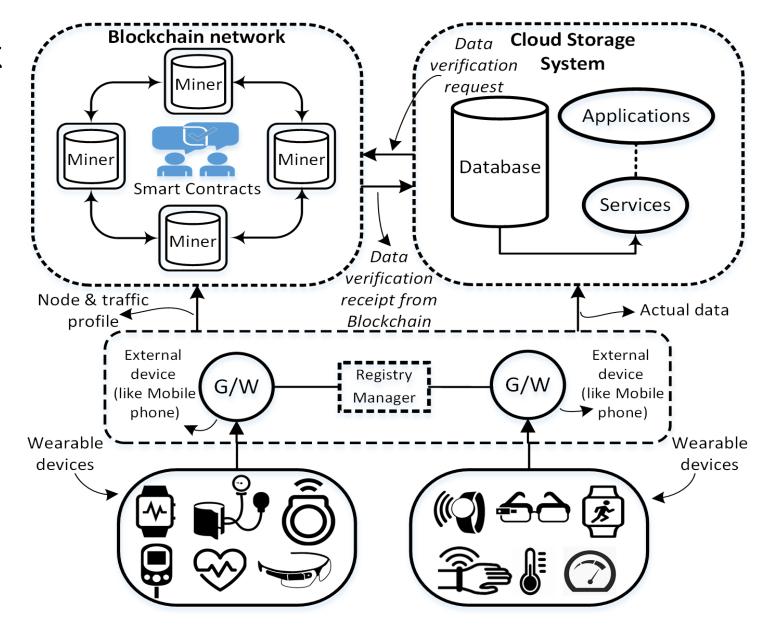
Smart Contracts

Transactions

- The record of an event, cryptographically secured with a digital signature, that is verified, ordered, and bundled together into blocks, form the transactions in the blockchain.
- In the Bitcoin blockchain, transactions involve the transfer of bitcoins, while in other blockchains, transactions may involve the transfer of any asset or a record of some service being rendered.
- Furthermore, a smart contract within the blockchain may allow automatic execution of transactions upon meeting predefined criteria.

What are Smart Contracts?

i. Autonomous agents which execute automatically and independently on the top of the blockchain


 ii. Visible to everyone & Fully trusted and scrutinised iii. Can write or query the blockchain 	Address			
iv. Invoked using transactions (ID + Data)	Local storage			
v. Logic in the smart contract is totally immutable	or State			
vi. All transactions to and from the smart contracts are fully traceable				
Components:				
 Unique address on the blockchain 				

- ii. Private storage or State
- iii. Associated code (where we can define our logic)

Caution

i. Once deployed, smart contracts cannot be reversed

Proposed Framework Using Blockchain & Smart Contracts

Contributions

- We proposed a trustworthy device registration and identity provenance smart contracts via blockchain to ensure the device integrity and provenance in cloud-centric IoT network.
- 2. We stationed a comprehensive data provenance smart contract in the blockchain to guarantee the secure provenance towards the data stored in the cloud.
- 3. We deploy a **self-learning traffic profile provenance contract** in the network. The contract is used to certify the provenance to the device traffic profile while tracing the discrepancies in its traffic behavior.
- 4. Finally, we outline the security analysis & implementation details of the proposed framework using private blockchain i.e., Hyperledger Fabric

Types of Contracts used in the Proposed Architecture

i. Device Registration Contract

- This global contract maps device identification strings to their blockchain address identity (equivalent to a public key).
- Policies coded into the contract can regulate registering new identities or changing the mapping of existing ones.

ii. Device Provenance Contract

Using device signature & device metadata

iii. Data Provenance Contract

Using Data hash, timestamp & device Signatures

iv. Traffic Profile Provenance Contract

Using traffic profile

Algorithm 1 Device Registration Contract

Input: transaction tx

 $tx \leftarrow tx_type$, reg_type, device ID, publickey, gateway

ID, & other device metadata

 $tx_type \leftarrow device_record$

 $reg_type \leftarrow$ new **or** update

Output: tx_{id} & bc_{id} {successful transaction tx to the blockchain}

1: if $(reg_type = new)$ then

- 2: $deviceID \leftarrow bc_{id}$ {unique blockchain address (equivalent to a public key) is assigned by a Membership Service Provider}
- 3: $tx \leftarrow set(tx \cup bc_{id})$ {create a new asset}
- 4: else
- 5: **if** (*reg_type* = update) **then**
- 6: query(tx) {query the blockchain to get the device registration information}
- 7: $tx \leftarrow set(updated_tx)$ {update an existing asset}
- 8: end if
- 9: end if
- 10: PutState(tx) {transaction tx is placed in a Write set as a data-write proposal. However, it does not affect the ledger}
- 11: WriteState(tx) {transaction tx is validated and successfully committed to the ledger}
- 12: return tx_{id} , bc_{id}

Algorithm 2 Device Provenance Contract

Input: transaction tx

 $tx \leftarrow tx_type$, publickey (device), & device_metadata

 $tx_type \leftarrow device_proven$

Output: True or False

1: $tx' \leftarrow query(publickey \text{ and } tx_type)$ {query the blockchain to get the device metadata}

2: if (tx' = null) then

3: *throw* {could not find the device}

4: else

- 5: **if** (*device'.sig* = *device.sig*) **then**
- 6: **if** (tx'.metadata = tx.metadata **then**
- 7: return *TRUE* {device identity is proven}

8: else

- 9: return *FALSE* {device identity is NOT proven}
- 10: end if
- 11: else
- 12: *throw* {device signature mismatch}
- 13: return FALSE
- 14: end if
- 15: end if

Algorithm 3 Data Provenance Contract

Input: transaction tx $tx \leftarrow hash(data), tx_type, publickey (device), \& times$ tamp (data collected) $tx_type \leftarrow valid_record$ **Output:** *True* or *False* 1: $tx' \leftarrow query(publickey \text{ and } timestamp)$ {query the blockchain to get the transaction record} 2: if (tx' = null) then throw {could not locate the record} 3: 4: else **if** (*device'.sig* = *device.sig*) **then** 5: if (tx'.hashvalue = hash(data) then 6: return TRUE {record is proven} 7: 8: else return *FALSE* {record is NOT proven} 9: end if 10: else 11: *throw* {signature mismatch} 12: return FALSE 13: end if 14: 15: end if

Algorithm 4 Traffic Profile Provenance Contract

Input: transaction tx'

 $tx' \leftarrow$ publickey (device), tx_type, timestamp, traffic_profile with feature vector f, & threshold vector t for feature vector f in tx'

 $tx_type \gets \mathsf{traffic_proven}$

Output: tx, traffic_proven (True or False)

{True: discrepancy detected & False: no discrepancy}

1: for all $k : k \in$ set of recent traffic profiles tx_{n-1} do

2: generate correlation model C for the feature vector fin tx_{n-1} {learning from the previously stored data in the blockchain}

3: end for

```
4: for all features f in tx' do
```

```
5: if (\delta(tx', f, C) > t) then
```

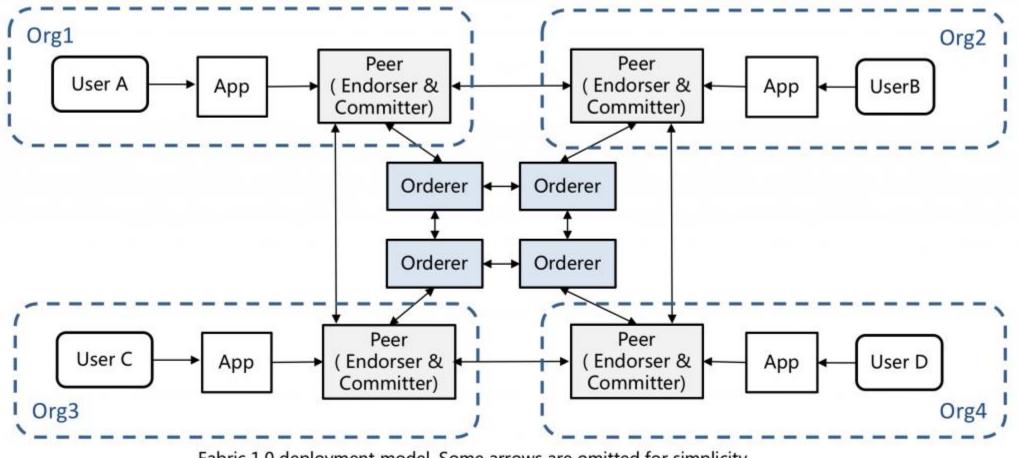
- 6: $discrepancy_status \leftarrow TRUE$
- 7: $traffic_proven \leftarrow FALSE$

8: else

- 9: $discrepancy_status \leftarrow FALSE$
- 10: $traffic_proven \leftarrow TRUE$
- 11: end if

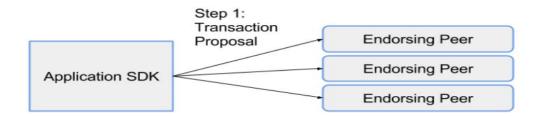
12: end for

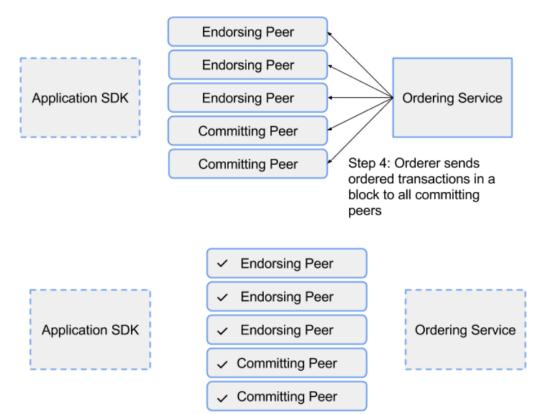
- 13: $tx \leftarrow tx' \cup traffic_proven$
- 14: PutState(tx)
- 15: WriteState(tx) {transaction tx is validated and successfully committed to the ledger}
- 16: **return** *tx*, *discrepancy_status*

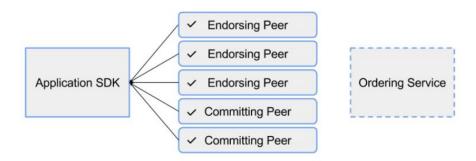

Significance

- i. Trusted data collection
- ii. Protected
- iii. Tampered proof
- iv. Data transparency and auditability

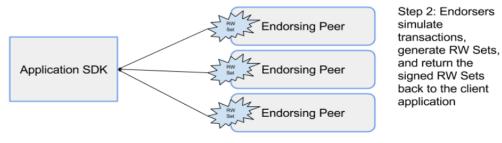
Implementation

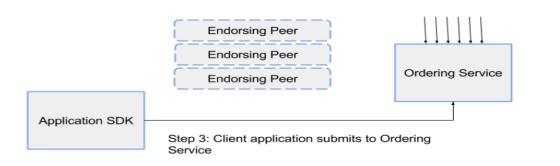

Hyperledger Fabric


Hyperledger Fabric

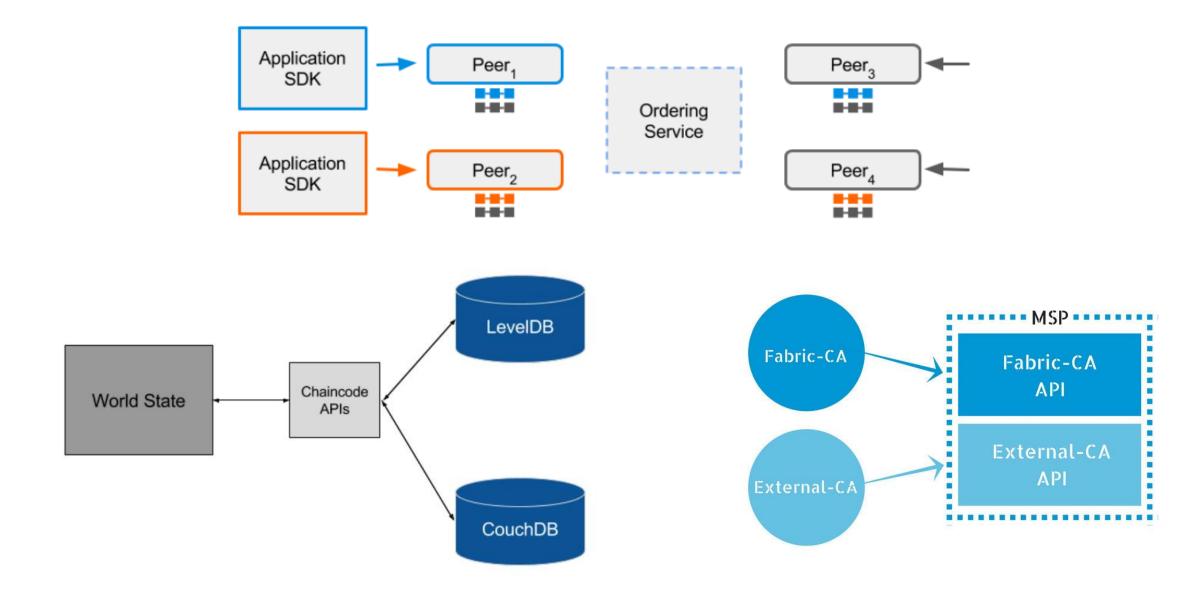

Fabric 1.0 deployment model. Some arrows are omitted for simplicity

Transaction Flow





Step 5: Committing peers validate each transaction in the block



Step 6: Committing peers asynchronously notify the Application of the results of the transaction.

Channels, World State Database, & MSP

ile Edit \	ew VM Tabs Help 📕 🔻 🛱 💭 💭 💭 🔟 🗔 🗔 🖾 🛅			
	□ Terminal ▼ Mon 8:53 PM	A 4	(i) (i)	ט -
5	saqibali@ubuntu: ~/education/LFS171x/fabric-material/tuna-app		a	
2	File Edit View Search Terminal Help			
	2018-07-16 12:50:29.188 UTC [grpc] Printf -> DEBU 03a ClientConn switching balancer to "pick_first" 2018-07-16 12:50:29.188 UTC [grpc] Printf -> DEBU 03b pickfirstBalancer: HandleSubConnStateChange: 0xc4203a3420, CONNECTING			
	2018-07-16 12:50:29.189 UTC [grpc] Printf -> DEBU 03c pickfirstBalancer: HandleSubConnStateChange: 0xc4203a3420, READY			
	2018-07-16 12:50:29.190 UTC [grpc] Printf -> DEBU 03d parsed scheme: ""			
	2018-07-16 12:50:29.190 UTC [grpc] Printf -> DEBU 03e scheme "" not registered, fallback to default scheme			
	1018-07-16 12:50:29.190 UTC [grpc] Printf -> DEBU 03f ccResolverWrapper: sending new addresses to cc: [{peer0.org1.example.com	n:7051 0 <nil>}]</nil>		
	1018-07-16 12:50:29.190 UTC [grpc] Printf -> DEBU 040 ClientConn switching balancer to "pick_first"			
	1018-07-16 12:50:29.190 UTC [grpc] Printf -> DEBU 041 pickfirstBalancer: HandleSubConnStateChange: 0xc420165950, CONNECTING			
-	1018-07-16 12:50:29.191 UTC [grpc] Printf -> DEBU 042 pickfirstBalancer: HandleSubConnStateChange: 0xc420165950, READY			
	2018-07-16 12:50:29.191 UTC [msp] GetDefaultSigningIdentity -> DEBU 043 Obtaining default signing identity			
	1018-07-16 12:50:29.191 UTC [grpc] Printf -> DEBU 044 parsed scheme: ""			
	1018-07-16 12:50:29.191 UTC [grpc] Printf -> DEBU 045 scheme "" not registered, fallback to default scheme			
	2018-07-16 12:50:29.192 UTC [grpc] Printf -> DEBU 046 ccResolverWrapper: sending new addresses to cc: [{orderer.example.com:76	050 0 <nil>}]</nil>		
	2018-07-16 12:50:29.192 UTC [grpc] Printf -> DEBU 047 ClientConn switching balancer to "pick_first"			
	2018-07-16 12:50:29.192 UTC [grpc] Printf -> DEBU 048 pickfirstBalancer: HandleSubConnStateChange: 0xc42044de40, CONNECTING 2018-07-16 12:50:29.192 UTC [grpc] Printf -> DEBU 049 pickfirstBalancer: HandleSubConnStateChange: 0xc42044de40, READY			
	2018-07-16 12:50:29.192 UTC [ghpc] Filter -> DEBU 049 pick is clarancer. Handlesubconnstatechange. 0xc42044de40, READY			
	2018-07-16 12:50:29.193 UTC [msp/identity] Sign -> DEBU 04b Sign: plaintext: 0AAA070A6A08031A0B0895A9B2DA05101A0E0A0A696E69	9744665646765720400		
	2018-07-16 12:50:29.193 UTC [msp/identity] Sign -> DEBU 04c Sign: digest: 6179B5DFB7DEC5124CBE55248A90CE7E9B58E9E77BA315A1C461			
	2018-07-16 12:50:29.204 UTC [msp/identity] Sign -> DEBU 04d Sign: plaintext: 0AAA070A6A08031A0B0895A9B2DA051010A1CF4B187B76			
	018-07-16 12:50:29.204 UTC [msp/identity] Sign -> DEBU 04e Sign: digest: 698846CCD6867D9A81DCCBE59C94E7A3E555E0E5F16D28D611F4			
	2018-07-16 12:50:29.209 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> DEBU 04f ESCC invoke result: version:1 response: <status:2< td=""><td></td><td></td><td></td></status:2<>			
)04_\376\272mp\031\304\004p-\330\324\341\2548%w\246>J\372x`xx2\376\221\022\216\010\n\365\007\022\030\n\004lscc\022\020\n\016\r			
	001\022\330\007\n\010tuna-app\022\313\007\032`\n\0011\032[{\"vessel\":\"923F\",\"timestamp\":\"1504054225\",\"location\":\"67.			
	":\"Miriam\"}\032_\n\00210\032Y{\"vessel\":\"49W4\",\"timestamp\":\"1487745091\",\"location\":\"51.9435, 8.2735\",\"holder\":	:\"Fatima\"}\032^\n\0012\0		
	2Y{\"vessel\":\"M83T\",\"timestamp\":\"1504057825\",\"location\":\"91.2395, -49.4594\",\"holder\":\"Dave\"}\032^\n\0013\032Y			
	stamp\":\"1493517025\",\"location\":\"58.0148, 59.01391\",\"holder\":\"Igor\"}\032_\n\0014\032Z{\"vessel\":\"P490\",\"timesta			
	ition\":\"-45.0945, 0.7949\",\"holder\":\"Amalea\"}\032_\n\0015\032Z{\"vessel\":\"S439\",\"timestamp\":\"1493512301\",\"locati			
	<pre>(",\"holder\":\"Rafa\"}\032`\n\0016\032[{\"vessel\":\"J205\",\"timestamp\":\"1494117101\",\"location\":\"-155.2304, -15.8723\' \\0017\0227{\"versel\".\"firestarp\".\"firestarp\".\"firestarp\".\"firestarp\".\"firestarp\".\"firestarp\".\"</pre>	,\"holder\":\"Shen\"}\032		
	\n\0017\032Z{\"vessel\":\"522L\",\"timestamp\":\"1496104301\",\"location\":\"103.8842, 22.1277\",\"holder\":\"Leila\"}\032`\r 89\",\"timestamp\":\"1485066691\",\"location\":\"-132.3207, -34.0983\",\"holder\":\"Yuan\"}\032_\n\0019\032Z{\"vessel\":\"129	1\0018\032[{\"Vessel\";\"E		
	i3091\",\"location\":\"153.0054, 12.6429\",\"holder\":\"Carlo\"}\032\003\010\310\001\"\017\022\010tuna-app\032\0031.0" endors			
	MSP\022\226\006BEGIN CERTIFICATE\nMIICGjCCAcCgAwIBAgIRAPlwF/rUZUP9mqN4wSml4iswCgYIKoZIzj0EAwIwczEL\nMAkGA1UEBhMCVVM			
	WExFjAUBgNVBAcTDVNhbiBG\ncmFuY2lzY28xGTAXBgNVBAoTEG9yZzEuZXhhbXBsZS5jb20xHDAaBgNVBAMTE2Nh\nLm9yZzEuZXhhbXBsZS5jb20wHhcNMTcwOU			
	<pre>(NDMy\nWjBbMQswCQYDVQQGewJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMN\nU2FuIEZyYW5jaXNjbzEfMB0GA1UEAxMWcGVlcjAub3JnMS5leGFtc</pre>			
	JgEGCCqGSM49AwEHA0IABHihxW6ks3B2+5XdbAVq3CBgxRRRZ22x\nzzpqnD86nKkz7fBElBuhlXl2K6rTxyY20B0B0ts8keqZ93xueRGymrajTTBLMA4G\nA1UdD	· · · · · · · · · · · · · · · · · · ·		
	ÄjAAMĊsGA1UdIwQkMCKAIEI5qg3Ndtru\nuLoM2nAYŪdFFBNMarRst3dusalc2Xkl8MAoGCCqGSM49BAMCÁ0gAMEUCIQD4j0Rn\ne1rrd0FSČzsR6u+IuuPK5dI/k			
	/EwZLFoFyjoHtr\ntvwzNUS1U0hEqIaDeo4=\nEND CERTIFICATE\n" signature:"0E\002!\000\231R\371&\273\335\326\341D\375\324\3	337!\374\005\200\271\270\2		
	50\005\352d\024Z\374c0\303\\0\256\262\002 \004\367\n1\263\277\263U\332\227\356\030-s[\243\020\241\317K\030{v\372\"\236'\$2\220	p" >		
	018-07-16 12:50:29.214 UTC [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 050 Chaincode invoke successful. result: status:200			
	1018-07-10 12.30.29.214 OTC [Chatheodecho] chatheoderhookeol Query -> 1000 050 chatheode choke successibil. Tesutt. Status.200			

To direct input to this VM, move the mouse pointer inside or press Ctrl+G.

Store path:/home/saqibali/.hfc-key-store

Successfully loaded admin from persistence

Assigned the admin user to the fabric client ::{"name":"admin","mspid":"Org1MSP","roles":null,"affiliation":"","enrollmentSecret":"","enrollment":{"sig ningIdentity":"addc3b90966cbab5468e9a06a029e55a2a72845fc7359dbce60f40396c9b2987","identity":{"certificate":"----BEGIN CERTIFICATE-----\nMIICAjCCAaigAw IBAgIUCxv+G28gebCNbK00doLHo7XEjCAwCgYIKoZIzj0EAwIw\nczELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDVNh\nbiBGcmFuY2lzY28xGTAXBgNVBAoTEG9yZ zEuZXhhbXBsZS5jb20xHDAaBgNVBAMT\nE2NhLm9yZzEuZXhhbXBsZS5jb20wHhcNMTgwNzA4MDc1NzAwWhcNMTkwNzA4MDgw\nMjAwWjAhMQ8wDQYDVQQLEwZjbGllbnQxDjAMBgNVBAMTBWFkbWlu MFkwEwYHKoZI\nzj0CAQYIKoZIzj0DAQcDQgAE68nxLGBALHrPrgSohZhWx3GsbDspu/+09a9Dc/rn\nDoChIIJNLAORxAX4bbc/BWatHVWVsWdzTAcqRXduzt69fKNsMGowDgYDVR0PAQH/\nBAQDA geAMAwGA1UdEwEB/wQCMAAwHQYDVR00BBYEF0+HgGBWA8jSXOZ10ur3R6Ds\n2NCdMCsGA1UdIwQkMCKAIEISqg3NdtruuLoM2nAYUdFFBNMarRst3dusalc2Xkl8\nMAoGCCqGSM49BAMCA0gAMEUC IQDPRIEr89N4VxS6mRLXChKbVo1nULdlvZXJaGWp\nSM8VHgIgatIi7bQLazxC+E/x+0UVgCJ8qYtIaXAb6cCEBzuTDrY=\n----END CERTIFICATE-----\n"}}

Store path:/home/saqibali/.hfc-key-store

Successfully loaded user1 from persistence

Query has completed, checking results

Response is [{"Key":"1", "Record":{"holder":"Miriam","location":"67.0006, -70.5476","timestamp":"1504054225","vessel":"923F"}},{"Key":"10", "Record":{
 "holder":"Fatima","location":"51.9435, 8.2735","timestamp":"1487745091","vessel":"49W4"}},{"Key":"2", "Record":{"holder":"Dave","location":"91.2395, -4
9.4594","timestamp":"1504057825","vessel":"M83T"}},{"Key":"3", "Record":{"holder":"Igor","location":"58.0148, 59.01391","timestamp":"1493517025","vesse
l":"T012"}},{"Key":"4", "Record":{"holder":"Amalea","location":"-45.0945, 0.7949","timestamp":"1496105425","vessel":"P490"},{"Key":"5", "Record":{"holder":"Rafa","location":"-107.6043, 19.5003","timestamp":"1493512301","vessel":"S439"}},{"Key":"6", "Record":{"holder":"Shen","location":"-155.2304, -15
.8723","timestamp":"1494117101","vessel":"J205"}},{"Key":"7", "Record":{"holder":"Leila","location":"103.8842, 22.1277","timestamp":"1496104301","vessel
l":"S22L"}},{"Key":"8", "Record":{"holder":"Yuan","location":"-132.3207, -34.0983","timestamp":"14850666691","vessel":"EI89"}},{"Key":"9", "Record":{"holder":"Carlo","location":"153.0054, 12.6429","timestamp":"1485153091","vessel":"129R"}}]

submit recording of a tuna catch: ['11', '28.012, 150.425', '498256368', 'Johon', '0239L'] Store path:/home/saqibali/.hfc-key-store Successfully loaded user1 from persistence Assigning transaction_id: bad37fa295c4e77b00ee9754a21c7d3326fe73328ab56340d3f2ef6f2a1c8425 Transaction proposal was good Successfully sent Proposal and received ProposalResponse: Status - 200, message - "" info: [EventHub.js]: _connect - options {} The transaction has been committed on peer localhost:7053 Send transaction promise and event listener promise have completed Successfully sent transaction to the orderer. Successfully committed the change to the ledger by the peer **Future Research Directions**

Key Issues in Blockchain & Smart Contracts

- 1. Privacy
- 2. Scalability
- 3. Smart Contracts are not Intelligent

Parno, B., Howell, J., Gentry, C., & Raykova, M. (2013). Pinocchio: Nearly practical verifiable computation. *Proceedings - IEEE* Symposium on Security and Privacy, 238–252. <u>https://doi.org/10.1109/SP.2013.47</u>

Ames, S., Hazay, C., Ishai, Y., & Venkitasubramaniam, M. (2017). Ligero : Lightweight Sublinear Arguments Without a Trusted Setup. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security - CCS '17, 2087–2104. https://doi.org/10.1145/3133956.3134104

1. Zero knowledge Proofs

Def. Zero-knowledge proofs are encryption schemes used to prove that you know something without revealing what it is.

For example, you can show without a doubt that you know the answer to a puzzle without actually disclosing the solution.

Types:

- 1. Interactive zero knowledge proofs
- 2. Non interactive zero knowledge proofs

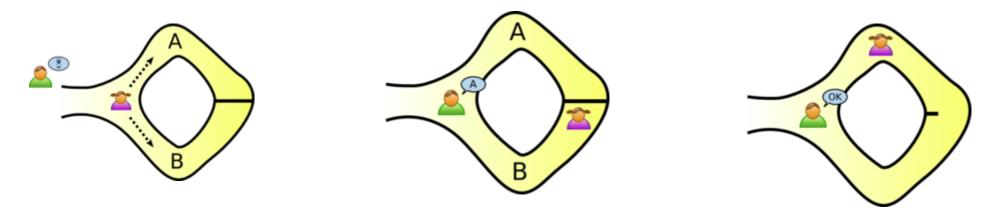
Oded Goldreich and Yair Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Journal of Cryptology. Vol 7(1). 1–32. 1994 (PS)

1. Interactive Zero Knowledge Proofs

Def. Interactive zero-knowledge proofs require interaction between the individual (or computer system) proving their knowledge and the individual validating the proof.

Actors in the system:

- **1. Proof** who claim some knowledge
- 2. Verifier who verify the claim of the prover


Key requirement: Interaction between the Prover & Verifier - in the form of the challenges such that the responses from the prover will convince the verifier if and only if the statement is true.

Goldwasser, S.; Micali, S.; Rackoff, C. (1989), <u>"The knowledge complexity of interactive proof systems"</u> (PDF), SIAM Journal on Computing, Philadelphia: <u>Society for Industrial and Applied Mathematics</u>, **18** (1): 186–208, <u>doi:10.1137/0218012</u>, <u>ISSN 1095-7111</u>

1. How Interactive Zero Knowledge Proofs work?

Example: Ali Baba Cave

Peggy (the **prover** of the statement) and Victor (the **verifier** of the statement). Peggy has uncovered the secret word used to open a magic door in a cave. Victor wants to know whether Peggy knows the secret word. Peggy does not want to reveal her knowledge (the secret word) to Victor

Quisquater, Jean-Jacques; Guillou, Louis C.; Berson, Thomas A. (1990). <u>"How to Explain Zero-Knowledge Protocols to</u> <u>Your Children"</u> (PDF). Advances in Cryptology – CRYPTO '89: Proceedings. **435**: 628–631.

1. Issue with Interactive Zero Knowledge Proofs?

Advantage: An interactive zero-knowledge proof has the advantage that only the verifier can be absolutely convinced that the prover has the knowledge.

Disadvantage: If bystanders and observers can't verify the claim, the prover then has to interact with every verifier independently—which takes time and is resource intensive.

2. Non-interactive zero-knowledge proofs

The reason for non-interactive zero-knowledge proofs is to allow a large number of observers to verify the proof efficiently.

In Blockchains: every block need to be computed and verified by every node in the network which raise the issue of scalability

Example: Sudoku Puzzle

Blum, Manuel; Feldman, Paul; Micali, Silvio (1988). <u>"Non-Interactive Zero-Knowledge and Its</u> <u>Applications"</u>. Proceedings of the twentieth annual ACM symposium on Theory of computing (STOC 1988): 103–112. <u>doi:10.1145/62212.62222</u>.

	CO	LUI	NN	CC	DLUI	NN	CO	LUI	NN
-	3		4		5				7
ROW	SECTOR		SECTOR		SECTOR				
	5		2	7					1
-			3			2			5
ROW	SECTOR		SECTOR		SECTOR				
-	9				1				8
-					4			6	
ROW	SECTOR		SECTOR		SECTOR		DR		
	1	2		9	7			5	

COLUMN COLUMN COLUMN

Practical Applications of Zero Knowledge Proofs

	prover scalability (quasilinear time)	verifier scalability (polylogarithmic time)	Transparency (public randomness)	Post-quantum security	
hPKC	Yes	Only repeated computation	No	No	
DLP	Yes	No	Yes	No	
IP	Yes	No	Yes	No	
MPC	Yes	No	Yes	Yes	
IVC+hPKC	Yes	Yes	No	No	
ZK-STARK	Yes	Yes	Yes	Yes	

Figure 2: Theoretical comparison of universal (NP complete) realized ZK systems.

References

[1] M. Díaz, C. Martín, and B. Rubio, "State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing," J. Netw. Comput. Appl., vol. 67, pp. 99–117, 2016.

[2] A. Botta, W. De Donato, V. Persico, and A. Pescapé, "Integration of Cloud computing and Internet of Things: A survey," Futur. Gener. Comput. Syst., vol. 56, pp. 684–700, 2016.

[3] K. Lee, S. Kim, J. Jeong, S. Lee, H. Kim, and J. S. Park, "A framework for DNS naming services for Internet-of-Things devices," Future Generation Computer Systems, North-Holland, 31-Jan-2018.

[4] D. He and S. Zeadally, "An Analysis of RFID Authentication Schemes for Internet of Things in Healthcare Environment Using Elliptic Curve Cryptography," vol. 2, no. 1, pp. 72–83, 2015.

[5] O. Novo, "Blockchain Meets IoT: an Architecture for Scalable Access Management in IoT," IEEE Internet Things J., vol. 14, no. 8, pp. 1–1, 2018.

[6] S. Wilkinson and J. Lowry, "MetaDisk: Blockchain-Based Decentralized File Storage Application," pp. 1–11, 2014.

[7] D. T. T. Anh, M. Zhang, B. C. Ooi, and G. Chen, "Untangling Blockchain: A Data Processing View of Blockchain Systems," IEEE Trans. Knowl. Data Eng., vol. 4347, no. c, pp. 1–1, 2018.

[8] J. R. Douceur, "The Sybil Attack," pp. 251–260, 2002.

[9] M. Castro and B. Liskov, "Practical byzantine fault tolerance and proactive recovery," ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461, 2002.

[10] M. Castro, M. Castro, B. Liskov, and B. Liskov, "Practical Byzantine fault tolerance," OSDI {'}99 Proc. third Symp. Oper. Syst. Des. Implement., no. February, pp. 173–186,

