VCS: A VIRTUAL COMPUTING
AND STORAGE APPROACH TO
COMPUTING CONTINUUM
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Background and problem statement

* Modern IT industry makes computer hardware cheaper
* 5G and broadband makes internet faster

* More users might have multiple computing devices like laptop, phone
and special equipment

* New request comes out - access same copy of desktop from multiple
devices located at geographically dispersed locations



E ° t ° ‘ t ] d ° ] t t [
ZAP, CR&TR, |[JIT, Sledge VDI Application Local-remote User profile
NomadB | LS cloudification | data mirroring
105 _
What is migrated process | VM container desktop application Data profile "%’l?jﬁl!‘g Fy—
Support all OS x x x v ' x X
. App1 App1
Desktop continuum | x Vv x \ x X v Client A Browser A Browser B
1) vol 2) Application cloudification
No legacy v v v v X X v
application porting Remote Remote
Office365 windows
data profile
No strong network | x X X X X \' v
dependency
Local data Local data windows windows
Computing Vv Vv \' X X Vv v p—— P profile profile
performance near oS - Windows Windows
to native 3) Local-remote data mirroring 4) User profile

» Steven et al proposed Zap, a pod or group of process migration solution based on an OS level thin virtualization layer.

* Jacob et al proposed an on-the-fly entire OS migration solution based on NomadBIOS, a Xen-based hypervisor with pre-copy
migration to keep the OS running while migrating, tracking the changes of its address space and sending updates of image over a
couple of iterations.

* Haikun et al provided a CR & TR (checkpointing/recovery and trace/replay) mechanism for fast and transparent VM migration
design to reduce the migration time and save network bandwidth.

* Fei and Xiaoming et al proposed a three-layer image management mechanism and correlated layer moving system to improve the
migration performance.

» Takahiro and Hirotaka et al suggested a very good live storage migration design with on-demand fetching and background copying
strategy to keep 10 virtual disk consistency while minimal 10 performance impact.
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VVCS overview — problem statement and scope

* Problem statement:

* User could pick up any VCS terminal within network scope to
access her private desktop environment

* VCS terminal is aware of software stack. It will designate the most
suitable hardware nearby to provide the best user experience as
native as PC.

* The software stack of each individual user is manageable,
updatable, migratable and propagatable

* Scope:
* VVCS terminal is mostly PC-like, Different users will share similar
software stack as much as possible
* VCS works under diversified network environments
* VCS would support all mainstream desktop OS
* does not require instancy or live



Client architecture and awareness
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Virtual storage — image overlap problem

Conflict happens in block#2
when applying both “user delta”
and “system patch" updates
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Step 1: user 1 and user 2 apply personal setting to a common
base image in “user 1 delta™ & “user 2 delta™ respectively

Step 2: administrator applies “system patch”™ centrally to base
image Step 3: Both “user1 data™ and "system patch™ happen to
update the same data block#2 of base image.

Result: conflict happens!



Virtual storage — personal computing engine

User 10 User 10
Filesystem & registry (virtualized view)
Files2 Registry 1’ Registry 2

Private Computing Engine (PCE) — run-time merge
Files/registry/setting in user storage has higher priority than system storage
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Virtual storage —an example

Private storage:
* Managed by each user
* File and registry- based
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Computing continuum workflow
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Optimization of workflow: the pre-copy
mechanism
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Cloud-edge-client collaboration
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PassMark Rating for PC, VCS and VDI

Test bed and evaluation .=
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Future directions

* Application continuum

 Partial continuum?

* Non-network continuum

* Scalable cloud-edge-client hierarchy



A very early demo to show the VCS approach
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