VCS: A VIRTUAL COMPUTING
AND STORAGE APPROACH TO
COMPUTING CONTINUUM

Agenda

* Background and problem statement
e Existing solutions and limitation

* Topology and concept

* VCS overview

Client architecture and awareness
Virtual storage

Computing continuum workflow
Optimization of workflow
Cloud-edge-client collaboration
Test bed evaluation

Future direction

* Avery early demo

Background and problem statement

* Modern IT industry makes computer hardware cheaper
* 5G and broadband makes internet faster

* More users might have multiple computing devices like laptop, phone
and special equipment

* New request comes out - access same copy of desktop from multiple
devices located at geographically dispersed locations

E ° t ° ‘ t] d °] t t [
ZAP, CR&TR, |[JIT, Sledge VDI Application Local-remote User profile
NomadB | LS cloudification | data mirroring
105 _
What is migrated process | VM container desktop application Data profile "%’l?jﬁl!‘g Fy—
Support all OS x x x v ' x X
. App1 App1
Desktop continuum | x Vv x \ x X v Client A Browser A Browser B
1) vol 2) Application cloudification
No legacy v v v v X X v
application porting Remote Remote
Office365 windows
data profile
No strong network | x X X X X \' v
dependency
Local data Local data windows windows
Computing Vv Vv \' X X Vv v p—— P profile profile
performance near oS - Windows Windows
to native 3) Local-remote data mirroring 4) User profile

» Steven et al proposed Zap, a pod or group of process migration solution based on an OS level thin virtualization layer.

* Jacob et al proposed an on-the-fly entire OS migration solution based on NomadBIOS, a Xen-based hypervisor with pre-copy
migration to keep the OS running while migrating, tracking the changes of its address space and sending updates of image over a
couple of iterations.

* Haikun et al provided a CR & TR (checkpointing/recovery and trace/replay) mechanism for fast and transparent VM migration
design to reduce the migration time and save network bandwidth.

* Fei and Xiaoming et al proposed a three-layer image management mechanism and correlated layer moving system to improve the
migration performance.

» Takahiro and Hirotaka et al suggested a very good live storage migration design with on-demand fetching and background copying
strategy to keep 10 virtual disk consistency while minimal 10 performance impact.

Client Edge Cloud

Topology and concept s

Local bare-metal Terminal
& local VM VCS

I
I
I
Client |
|
I
I
I

Edge VM VCS VCS
Terminal Client
local Near (connected via LAN) Backend (connected via WAN)

e Software stack, Desktop

 Computing tasks,

 Terminal and Client,
* Edge and cloud, Local,
* near and backend,

 Client awareness

VVCS overview — problem statement and scope

* Problem statement:

* User could pick up any VCS terminal within network scope to
access her private desktop environment

* VCS terminal is aware of software stack. It will designate the most
suitable hardware nearby to provide the best user experience as
native as PC.

* The software stack of each individual user is manageable,
updatable, migratable and propagatable

* Scope:
* VVCS terminal is mostly PC-like, Different users will share similar
software stack as much as possible
* VCS works under diversified network environments
* VCS would support all mainstream desktop OS
* does not require instancy or live

Client architecture and awareness

Pre-boot period Run-time period

1 Awareness considerations:

Pre-boot payload = — = =} Software stack (US, * |ISA/CPU arch

| - middleware and apps)
\ Virtual disk driver | * Performance

o TS [P .
3_ = ' . i
9 _— . _ . Commercial reasons
Authen|| 0os || Virtual machine
tication g Loader 2 —
I | Virtual disk driver
— o o o o Result:
BIOS & firmware (_Local Cache * Local bare-metal

Virtual Disk * Local VM

Image

Hardware Platform

* Adjacent edge

1, bare-metal boot; 2, virtual machine boot; 3. boot with edge server

Virtual storage — image overlap problem

Conflict happens in block#2
when applying both “user delta”
and “system patch" updates

s By
I’ M i b
apping
USerUSRE: sbla Updated

Block ated block # blocks

E] pointed to UDF Block #0

2 v 0 Block £1

6 2 _~| Block #2

Block #n
Base image

Block #0 Block #1 Block n2

Block #3 Block #4 Block #5
t Block #6 Block #N

User1 delta S
P System patch
base image
Incremental based disk image management
\\
Mappin
\iyswm patch t:b‘:e e Updated blocks
Rlock 2 Up.dlled block # Block #0
\ pointed to UDF
8 Block #1
2 1 4
Block #m

Step 1: user 1 and user 2 apply personal setting to a common
base image in “user 1 delta™ & “user 2 delta™ respectively

Step 2: administrator applies “system patch”™ centrally to base
image Step 3: Both “user1 data™ and "system patch™ happen to
update the same data block#2 of base image.

Result: conflict happens!

Virtual storage — personal computing engine

User 10 User 10
Filesystem & registry (virtualized view)
Files2 Registry 1’ Registry 2

Private Computing Engine (PCE) — run-time merge
Files/registry/setting in user storage has higher priority than system storage

. | Filesa Files2 | | Registry 1 | !
¢ File and registry in system storage E
: managed by blocks :
e O] Block data
presented

Delta image
Registry 1 CEN- as files

User data storage in data files Base image

holding file, registry and ﬂ ﬂ
other system setting data ﬂ
(s f oM AQNB | D] E |

System data storage (Base + delta) in blocks

Virtual storage —an example

Private storage:
* Managed by each user
* File and registry- based

- Only update when Image Operation
write/update Base Have 3 files: a, b, ¢
* F”es/_regls”y _m _prlvate Delta #1 Update a to a’, remove b. so base +
has higher priority than User A User B delta#l = a’, ¢
that of system ,sj:o.rage _____ ~ - e - Delta #2 Add file d, so base + delta # + delta#2 =
I 1 3 \ a,c,d
1 User A private ! ! User B private 1
t P 1 I P 1 User A private Private file: a”’, d”’
I storage (I storage r
1o User 2 private Private file: e
Combination Result of
files
= .- E"’"’"\.—__’_ T Base + User A a”, b, c, d”
n [T B delta #1 A e, d”
1 — ase + delta + user a’, c,
System storage: ' Delta #2 \1 I
Y ge: Iy - T - ' : Base + delta #1 + delta #2 + User A a’, c, d”
* Managed by system |
. g Y sy ry) i Base + Base + User A a, b, c e
administrator 1 Delta #1 — ¥ — delta#l +
 Block based storage: 1 U 1 J \ :: Base + delta#2 Base + delta #1 + user A a’,c e
[
* Incremental based |, , > ‘ _!‘ delta#1 Base + delta #1+ delta #2 + User A a,c d e
[Base image T —
\ '_y _- p, _‘1| Conclusion: in any combination of system storage & private storage,
~

—————————— s private data (file) is still there no matter how system data is changed.

— — =
i e T e

Computing continuum workflow

Server
Disk image

sync server Image repository

Client A
7 |
RuntimeOS piocktransfer _— _ _____ -7 1
--------- - Block transfer
Aoblications Mesg Image sync P _ \\
PP Notlfy. P 4 daemen ’/ Client B S~
l _” - | Runtime OS \\
Virtual disk driver -~ Cache 10 Driver | \
‘ Applications Image sync |,
l' PP daemon \
y | |
Virtual disk driver Cache 10 Driver
|
|
WRITE 7/

TO /,

Image syncing cache

Optimization of workflow: the pre-copy
mechanism

Target client
BIOS and pre-
Source 05 Source 0% Delta image boot payload Delta image Target OS5
rUnning shutdown upload booting download booting

)) Gl =) =) G—

System migration without pre-copy mechanism

Target client

SﬂII-JI"IiE 05 .) BIOS and pre- .
running, delta Source OS5 Remain delta boot payload Delta image Target O5
iMage syncing shutdown image upload booting download booting

) =) =) (=) Gu—)

System migration with pre-copy mechanism

Desktop migrate from source
client to target client

Cloud-edge-client collaboration

Clhient:
* Load either an : :
_ _ entire OS or a single App Linux win
service e |CE app
template template A * With bare-metal,
VM, container, et al.
One instance each

time

Build edge by \ 7 A Choose to
- template ! Computing boot
deployment ! migrates between
| client and edge

Container :ontainer Bare-metal

LY
|, Jp— om— t
b] I [= l Eli",nt
A
i

template

Cloud: Edge:
= Center of the infrastructure E®:)
* Cloud defines edge: manage |l Service o - SN | © Geographically close to
ge: 2E App win Linux client
edges by template :mplate template o
deployment = Control plane: service in
container container Container VM container container

o Generate, configure, manage ond
daploy services
o Eg. TCl service, storage service Orchestration

*» Data plane: Computing
tasks: Win OS5 in VM,
Linux OS in container,
App in sandbox, ...

Edge = Value-add with platform

features — IA stickiness

Control plane I Data plane

~—

PassMark Rating for PC, VCS and VDI

Test bed and evaluation .=

oo
-£ 6000
& 5000
= 4000
L1+
! = 3000
a
s 2000
woo n [
o - S (11 [
PassMark CPU Mark 2D graphics 3D Graphics Memory Disk Mark
VM @ CI'DUd rating Mark Mark Mark
M native PC W VCS with bare metal M VCS with VM VCS with edge m VDI

—~

Disk 10 Benchmark - Single Thread

600
[=Ts]
—
= 500
3~}
[= =
== 400
o
£ 300
=)
= 200
]
2 100
(]
o
32M 32M 128M 128M 512M 512M 2048M 2048M
READ WRITE READ WRITE READ WRITE READ WRITE
M native PC SEQy M native PC RND M| VWVCS with bare metal SEQ.
VCS with bare metal RND m WVCS with WM SEQ, = VCS with VM RND
A A
migration via different network migration of different sized images

1000

Q00 1000
a00
700 A0
]
oo &]
oo 00
300
200 ___—_-_/ 200
100
_____....---""__
SO0 16 b 4G

LN inter-uilding nler-city inter-centinent

e A TN [SRrrids] —E0G Speed (MR WAV Time (sceonds) B AV Speed [MA/s)

Y g

Future directions

* Application continuum

 Partial continuum?

* Non-network continuum

* Scalable cloud-edge-client hierarchy

A very early demo to show the VCS approach

THANK YOU

