The 1st International Conference on Ubiquitous Security (UbiSec 2021) The 6th International Workshop on Trusted Computing (IWTC 2021)

Secure Search in Cloud Computing

Presenter: Qin Liu

Hunan University

Dec. 30, 2021

Introduction

• Searchable encryption (SE) is a tool that allows the cloud server to perform secure searches over encrypted data

Searchable Encryption

Symmetric key setting: the keys encrypting the index and the token are the same Asymmetric key setting: the keys encrypting the index and the token are different

Common Leakage in SSE

Access pattern: which files have been returned Search pattern: whether two searches were performed for the same keyword

Overview of Our Work

<u>Q. Liu</u>, Y. Peng, J. Wu, T. Wang, and G. Wang, "Secure Multi-Keyword Fuzzy Searches with Enhanced Service Quality in Cloud Computing" IEEE Transactions on Network and Service Management (TNSM),

Q. Liu, Y. Tian, J. Wu, T. Peng, and G. Wang, "Enabling Verifiable and Dynamic Ranked Search Over Outsourced Data," IEEE Transactions on Services Computing(TSC), 2019.

<u>**Q. Liu**</u>, X. Nie, X. Liu, T. Peng, and J. Wu, "Verifiable Ranked Search over Dynamic Encrypted Data in Cloud Computing," Proc. of IWQoS 2017.

based on Comparable Inner Product Encoding, Proc. of CNS 2018.

L. Du, K. Li*, Q. Liu*, Z. Wua, S. Zhang, "Dynamic Multi-Client Searchable Symmetric Encryption with Support for Boolean Queries, Information Sciences," 2019.

B. Hu, <u>**Q. Liu**</u>, X. Liu, T. Peng, G. Wang, J. Wu, "DABKS: Dynamic Attribute-based Keyword Search in Cloud Computing," Proc. of ICC 2017.

Prime Inner Product Encoding for Effective Wildcard-based Multi-Keyword Fuzzy Search

Qin Liu^a, Yu Peng^a, Shuyu Pei^a, Jie Wu^b, Tao Peng^c and Guojun Wang^c

^a Hunan university
 ^b Temple university
 ^c Guangzhou university

Introduction to Secure Fuzzy search

Alice wants to retrieve files containing keyword "cloud" from cloud servers.

The misspelling of a query keyword will cause an error result to be returned.

Related work on Secure Fuzzy Search

(contain misspelled keyword)

Schemes	Multi-keyword fuzzy Search	Flexibility	Indexes	Building blocks
INFOCOM2010 [1]	×	-	-	Predefined set
INFOCOM2014 [2]	\checkmark	×	Forward index	LSH、 bloom filter
TIFS2016 [3]		×	Forward index	LSH、 bloom filter
TSC2017 [4]	\checkmark	X	Forward + inverted index	LSH、 bloom filter
TDSC2019 [5]	\checkmark	×	tree	-
JNCA2020 [6]		×	tree	LSH、 bloom filter

Contributions of Our Work

The Prime Inner Product Encoding (PIPE) Scheme

Main idea

• Encoding a query keyword or an index keyword into a vector filled with primes or reciprocals of primes, such that <u>the result of vectors' inner product</u> is an integer only when two keywords are similar.

Compared with Previous Fuzzy Search Schemes

- **Greater flexibility.** Vectors are organized into prime-related matrices to support multi-semantic queries.
- **Higher efficiency.** A keyword balanced binary (KBB) tree is built to support parallelizable and dynamic search.
- Enhanced robustness. A query matrix is extended by random noises to resist linear analysis attacks.

Basic scheme: Prime Inner Product Encoding (PIPE₀)

• The inner products between the index vectors and the query vectors

$$R = \begin{bmatrix} \mathbf{p}_{hello} \cdot \mathbf{q}_{hel^*o} = 34, & \mathbf{p}_{hello} \cdot \mathbf{q}_{k^*y} \approx 3.11 \\ \mathbf{p}_{hello} \cdot \mathbf{q}_{k^*y} = 3.12, & \mathbf{p}_{key} \cdot \mathbf{q}_{k^*y} \approx 21 \end{bmatrix}$$

- For AND queries, if each column of *R* has at least one integer, the query *q* matches the file *D*
- For OR queries, if at least one element in *R* is an integer,
 the query *q* matches the file *D*

Secure KNN

x = < 1, -0.5 >, q = < 1, 1 >; ensure $x \cdot q = 0.5$ can be recovered on E(DB)

 The multiplication of the plaintext matrices to be calculated based on their encrypted forms.

W. K. Wong, D. W.-I. Cheung, B. Kao, et al, "Secure knn computation on encrypted databases," in Proc. of SIGMOD, 2009.

Advanced scheme: PIPE_S

• Secure KNN failed to resist linear analyses. ICDE2013 [6]

- Each column of matrix Q contains at least one element of vector q.
- > The sum of the random numbers at the *l*-th row, denoted as δ_l , is equal to $t_l q[l]$ where $t_l = 0$ or $(t_l + 1)$ is a prime outside primes set \mathcal{P} .

 $\alpha = p \cdot q + X$, where $X \in R$ is a random number that has no linear relationship with the result of $p \cdot q$. Therefore, it is impossible for the adversary to decompose $p \cdot q$ from α .

Tree-based Index

Files	keywords
D_1	{"bed", "cash"}
D_2	{"cash"}
<i>D</i> ₃	{"cat", {"pen"}
D_4	{"love"}

 u_0 u_1 u_2 u_2 u_3 u_4 u_5 u_6 u_6 u_6 u_1 u_2 u_3 u_4 u_5 u_6 u_6 u_6 u_6

U=<nid, data, fid, lchild, rchild>

U_{3.data}

 5	727	769	7	751	773	11	761	3	•••
 761	5	11	773	751	7	727	3	769	•••

U4. data

 761	5	11	773	751	7	727	3	769	
 1	1	1	1	1	1	1	1	1	

U_{1. data}

5 X	797	769	$7 \times$		773	$11 \times$	761	3 X	
 761	$\times 5$	×11	773	751	$\times 7$	727	$\times 3$	769	•••
 761	5	11	773	751	7	727	3	769	

Parallel search

Let $P = {\rho_0, \rho_1, \rho_2, \rho_3}$ be a set of 4 available processors in the system

Evaluation

• Comparison of the execution time (*ms*) for AND queries

(a) The time for searching *n* files

(b) The time for searching γ keywords

(c) The search time ^tunder different t

• Comparison of the execution time (*ms*) for AND queries

References

[1] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, "Fuzzy keyword search over encrypted data in cloud computing," in Proc. of INFOCOM, 2010. [INFOCOM2010]

[2] B. Wang, S. Yu, W. Lou, and Y. T. Hou, "Privacy-preserving multikeyword fuzzy search over encrypted data in the cloud," in Proc. of INFOCOM, 2014. [INFOCOM2014]

[3] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, "Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement," IEEE Transactions on Information Forensics and Security, 2016. [TIFS2016]

[4] J. Chen, K. He, L. Deng, Q. Yuan, R. Du, Y. Xiang, and J. Wu, "EliMFS: achieving efficient, leakage-resilient, and multi-keyword fuzzy search on encrypted cloud data," IEEE Transactions on Services Computing, 2017. [TSC2017]

[5] Q. Liu, Y. Peng, S. Pei, J. Wu, T. Peng and G. Wang, "Prime Inner Product Encoding for Effective Wildcard-based Multi-Keyword Fuzzy Search," IEEE Transactions on Services Computing, 2020. [TSC2020]

[6] B. Yao, F. Li, and X. Xiao, "Secure nearest neighbor revisited," in Proc. of ICDE, 2013. [ICDE2013]

Secure and Efficient Multi-Attribute Range Queries based on Comparable Inner Product Encoding

Qin Liu^a, SiXia Wu^a, Shuyu Pei^a, Jie Wu^b, Tao Peng^c and Guojun Wang^c

^a Hunan university
 ^b Temple university
 ^c Guangzhou university

Introduction to Secure Range Query

Location based services(LBS)

- LBS uses of location technology to obtain the current location of the device and provides query services through the mobile Internet.
- E.g. **range query** or *k*NN **query**.

Introduction to Secure Range Query

Point	x-coordinate	y-coordinate
P ₁	300	480
P ₂	350	420
P ₃	400	440
P ₄	450	520
P ₅	450	300

• 2-dimensional range query is used in Location Based Services(LBS).

- E.g. Q = (370, 460) and edge length = 100, the result of range query is $\{P_2, P_3\}$.
- Besides, multi-dimensional range query has wide application prospect.

• (Age in [20,40] AND Blood Pressure in [100, 130] AND Weight in [60, 80])

Challenge in secure range query: Comparisons need to be performed based on ciphertextes!

Related work on Secure Range Query

Schemes	Efficiency	Scalability	Security	Privacy
Most of OPE	v	~	×	~
Ideal OPE	×	✓	v	✓
ORE	v	v	×	~
Homomorphic	×	✓	v	✓
CIPE scheme	v	 Image: A set of the set of the	 	✓

Contributions

- Enhanced security. It can resist inference attacks that existing OPE schemes are vulnerable to.
- **Higher efficiency.** It needs only around **1.4s** on average while performing two-attribute range queries on **1 million** encrypted data records.

Basic Scheme: CIPE₀

Query([320,420], [410,510])

Query vector constructions

P_{3y} 440 440 1 1

Index vector constructions

$$\mathbf{p}_{3x} \cdot \mathbf{q}_{xl} = 2 \times (-400 + 320) < 0$$

$$\mathbf{p}_{3x} \cdot \mathbf{q}_{xu} = 2 \times (-400 + 420) > 0$$

$$\mathbf{p}_{3y} \cdot \mathbf{q}_{yl} = 2 \times (-440 + 310) < 0$$

$$\mathbf{p}_{3y} \cdot \mathbf{q}_{yu} = 2 \times (-440 + 510) \ge 0$$

The distance between attribute valuesThe equality of attribute values

Advanced scheme: CIPE_S

• Secure KNN has been proved unable to resist chosen plaintext attacks(CPA)

 $p \cdot q \neq p'_{|a|} \cdot q'_{|a|} + p'_{|\beta|} \cdot q'_{|\beta|}$

Evaluation

• Comparison of the execution time (ms) between CIPE and mOPE

R. A. Popa, F. H. Li, and N. Zeldovich, "An ideal-security protocol for order-preserving encoding," in Proc. of S&P, 2013

Ongoing Work

Forward and Backward Privacy of DSSE

Qin Liu^a, Yu Peng^a, Hongbo Jiang^a, Guojun Wang^b, Tian Wang^c, and Jie Wu^d

Dynamic searchable symmetric encryption (DSSE)

- Keywords are part of the files. File content can be recovered.
- Keywords can be used to classify files and help other attacks.

Y. Zhang et al, "All your queries are belong to us: the power of file-injection attacks on searchable encryption," in Proc. of USENIX, 2016.

file injection attack !

Forward Privacy (FP)

 Forward privacy (FP) requires that the newly added files cannot be linked to previous search tokens.

[1] Chang et al. "Privacy preserving keyword searches on remote encrypted data. " in Proc. ACNS, 2005.

[2] Stefanov et al. "Practical Dynamic Searchable Encryption with Small Leakage. " in Proc. NDSS, 2014.

[3] Bost et al."Σοφος: Forward secure searchable encryption." in Proc. CCS, 2016.

State-of-the-art FP Schemes

• Sophos: Trapdoor permutation (TDP)

• Dual dictionary

Relations among tokens. Operations in red can only be done by the client, using the secret key SK

• Fast: Pseudorandom permutation (symmetric primitives)

Re-Encryption Storage cost

Backward Privacy (BP)

• Backward privacy (BP): the deleted files cannot be searched any more.

• Backward privacy: the deleted files cannot be searched.

[1] Bost, Raphaël, Brice Minaud, and Olga Ohrimenko. "Forward and backward private searchable encryption from constrained cryptographic primitives," in Proc. of CCS, 2017.

State-of-the-art- BP Schemes

- Constrained pseudorandom function (CPRF)
- Public-key Puncturable Encryption

- Symmetric Puncturable Encryption (SPE)
- FP + 2 round trip

Related Work on Forward & Backward Privacy

Schemes	Forward privacy	Backward privacy	Search round trip	Building blocks
Sophos [1]	\checkmark	×	-	Trapdoor permutation
FAST [2]	\checkmark	×	-	Pseudorandom function
Dual [3]	\checkmark	×	-	Dual dictionary
Diana _{del} [4]		BP-3	2	Constrained pseudorandom functions
Janus [4]	\checkmark	BP-3	1	Puncturable encryption
Janus++ [6]	\checkmark	BP-3	1	Symmetric puncturable encryption
Fish-bone [7]	\checkmark	BP-3	2	Symmetric key encryption
Fides [4]	\checkmark	BP-2	2	From Sophos
Mitra [8]	\checkmark	BP-2	2	_
Moneta [4]	\checkmark	BP-1	3	obvious RAM
Orion [8]		BP-1	O(log N)	obvious RAM

Our Scheme with FP & BP

- Basic scheme (FP)
 - A hybrid index structure that incorporates the merits of both inverted indexes and forward indexes, but is much more simple and efficient.
- Advanced scheme (FP+BP)
 - Hybrid index + Symmetric Puncturable Encryption (SPE)
 - File-based BP

ind	head ^{ind}
ind1	
ind2	

Our Future Work

Secure Search in Emerging Computing

Thanks for your attentions

Email: gracelq628@hnu.edu.cn